Digital IIR Filters Design Using Differential Evolution Algorithm with a Controllable Probabilistic Population Size
نویسندگان
چکیده
Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive.
منابع مشابه
Design of IIR Digital Filter using Modified Chaotic Orthogonal Imperialist Competitive Algorithm (RESEARCH NOTE)
There are two types of digital filters including Infinite Impulse Response (IIR) and Finite Impulse Response (FIR). IIR filters attract more attention as they can decrease the filter order significantly compared to FIR filters. Owing to multi-modal error surface, simple powerful optimization techniques should be utilized in designing IIR digital filters to avoid local minimum. Imperialist compe...
متن کاملA Hybrid Differential Evolution Method for the Design of IIR Digital Filter
This paper establishes methodology for the robust and stable design of infinite impulse response (IIR) digital filters using hybrid differential evolution method. Differential Evolution (DE) is undertaken as a global search technique and exploratory search is exploited as a local search technique. DE is a population based stochastic real parameter optimization technique relating to evolutionary...
متن کاملDesign of IIR digital filters with non-standard characteristics using differential evolution algorithm
In the paper an application of differential evolution algorithm to design digital filters with non-standard amplitude characteris tics is presented. Three filters with characteristics: linearly growing, linearly falling, and non-linearly growing are designed with the use of the proposed method. The digital filters obtained using this method are stable, and their amplitude characteristics fulfil...
متن کاملDesign of Digital IIR Filters using Integrated Cat Swarm Optimization and Differential Evolution
This paper aims to establish a solution methodology for the optimal design of digital infinite impulse response (IIR) filters by integrating the features of cat swarm optimization (CSO) and differential evolution algorithm (DE). DE is a population based stochastic optimization technique which optimizes real valued functions. It requires negligible control parameter tuning but sometimes causes i...
متن کاملLow latency IIR digital filter design by using metaheuristic optimization algorithms
Filters are particularly important class of LTI systems. Digital filters have great impact on modern signal processing due to their programmability, reusability, and capacity to reduce noise to a satisfactory level. From the past few decades, IIR digital filter design is an important research field. Design of an IIR digital filter with desired specifications leads to a no convex optimization pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012